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Introduction

A uniform (scalar) square lattice
m Green's function & primitive wave forms

Triangular lattices

m Scalar problem
= Green's function & primitive waveforms

m Vector problem - planar elasticity
= Governing Equations
= Dispersive properties
= Primitive Waveforms
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A uniform (scalar) square lattice

A uniform square lattice

Qo @ Q m Label each node by n € Z?

m Introduce counting vectors
e = [61/,621] .

m Lattice vectors: t; = [¢,0],

\ ¢ ® ? tr=[0,4].
m Translation matrix
T = [t1, t2].
® ® ® m Position of nt" node:
XxX=n®T.
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A uniform (scalar) square lattice

A uniform square lattice

Qo @ Q m Label each node by n € Z?
m Introduce counting vectors
e = [61/,621] .

R (n) ) m Lattice vectors: t; = [£,0]7,
? 4 t=[0,4T.
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m Translation matrix
T = [tl, t2].

® m Position of nth node:

x=n®7T.
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A uniform (scalar) square lattice

A uniform square lattice

C rs m Label each node by n € Z?
€2 .
m Introduce counting vectors

e = [61/,621] .

m Lattice vectors: t; = [¢,0],

el) t = [O,K]T.
m Translation matrix
T = [tl, t2].
€) u Position of nth node:
x=n®7T.
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A uniform (scalar) square lattice = Green’s function & primitive wave forms

Uniform Square Lattice

Green's function for time-haromic out-of-plane shear

Balance of linear momentum at node n connected to set of nodes
P(n) = {n+e;,n £ ey} (for time-harmonic deformations)

> u(p) — [P(n)|u(n) + w?u(n) = modno
pEP(n)

Discrete Fourier transform:

F:u(lm) = UE) = Z u(m)exp{—i§ - (n®T)}

meZ?

Inverse transform:

Green's Function

_ 1T cos(mér) cos(n2€2)
u(n) = 7r2/0 /0 w2 — 4+ 2(cos &y + cos{z)dgldgz'
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A uniform (scalar) square lattice = Green’s function & primitive wave forms

Primitive Wave Forms at a Saddle Point

Dispersion Diagram Slowness Contour
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niform (scalar) square lattice = Green’s function & primitive wave forms

Two stationary points of different kinds
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Uniform Triangular Lattice

Colquitt et al.  British Applied Mathematics Colloquium 2012



Uniform Triangular Lattice

xV=noT | T=[t] , t1=[60", ta=0[1,V3]7/)2

/

cell n = [ny, nz]T € 7? e; = [01;, 52i]T
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Triangular lattices

Uniform Triangular Lattice

xV=noT | T=[t] , t1=[60", to=0[1,V3]7/)2

(n ¢ -
: e\+ €
(n
VEA
/) ( 02y /e
(n—£1\— e) (n—|—31 e,

cell n = [ny, n2]T € 7? e; = [01;, 52i]T
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Uniform Triangular Lattice

Dispersive properties

Fourier Transform:

[wz — 6 +2cos&; + 4cos(£1/2) cos(€2v/3/2) | U(E) =1,

~

-~

o(w,€)

SRR
M
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Uniform Triangular Lattice

Green's function for time-harmonic out-of-plane shear

R sl 4 my2)e] cosimen/3)/2)
cos|(ny + no 1] COS[N2&2
- 2/ 6 [ o)
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Triangular lattices = Vector problem - planar elasticity Governing Equations

In-plane vector elasticity: Equilibrium equations

Displacement amplitude field for time-harmonic waves

ul®) = [u%l), u§1)79(1)]T m The axial deformation satisfies
(0% — w?pl/(ES)ur(x) =0,
/ with 00(0) — o, an(0) — o
- m The flexural deformation solves
u® = [uf),ug),@(z)}

[0% — w?pS/(EN]uz(x) =0,

with up(0) = ugl), w(l) = ugz),
a)%XU2|X:0 = 9(1), 8)2(XUQ‘XZZ = 9(2)
. m Inclusion of flexural deformation
] F3(') = —EI192, ux(x). allows for micropolar rotations.

(] Fl(i) = ESOyu1(x),
w B = —E103  1n(x),
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Triangular lattices = Vector problem - planar elasticity Governing Equations

B
all 0 ugl) b11 0 0 ngz)
FO =10 apn ax ugl) + 10  bxn b u§2)

0 a3 asz] |p) 0 —by3 bs3] (9@

2
0

ail  =mncotn

an = B3 (cosh Asin A — cos Asinh \) /[2(1 — cos A cosh \)]
a3 = BA%sinAsinh \)/[2 (1 — cos A cosh \)]

as3 = BA(sin Acosh A — cos Asinh A))/[2 (1 — cos Acosh \)]
bi1 = -—nesen

bys = A% (cosh A — cos\) /[2 (1 — cos A cosh \)]

bsz = BA(sin A —sinh \) /[2(cos Acosh A — 1)]

with 8 = 2E1/(S0?), n = w/p, \* = 2w?p/B.
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Triangular lattices = Vector problem - planar elasticity Governing Equations

Balance of Momentum

Uniform elastic triangular lattice

» Nodal displacement in the nth cell: u("
m Introduce the matrices:
“ A(j) = RU)TAR(j) and B(j) = R(j)" BR())
s J1

m R(j) - matrix of rotation by angle jr/3
Equations of motion

w?u™ = B(0)u(n + e1) + B(1)u(n + e3) + B(2)u(n — e1 + e5)
+ B(3)u(n —e1) + B(4)u(n — ey)

+B(5)u(n+e1 —ex)+ > A(j)u(n)
0<j<5
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lar lattices  Vector problem - planar elastici Dispersive properties

Dispersion Equation

Fourier transformed equation

WU = o(w; €U

The dispersion equation is then det [a w, &) — wZ]I] =0.

R
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) ’ R B teets
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Triangular lattices = Vector problem - planar elasticity = Dispersive properties

Slowness Contours

m Isotropic for small w, as expected.

m Characteristic hexagonal contour at 323
Hz.

m Saddle point & intersection of slowness
contours.

m Further saddle point at 615.8 Hz.

m “Switching” of preferential directions
unique feature of elastic lattice.
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Triangular lattices ~ Vector problem - planar elasticity = Primitive Waveforms

Saddle Point

E E
4 4
3 3
2 2
1 1
W0 w0
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_ -5

2 [) 2 2 0 2

Ei

f =323 Hz f =428.6 Hz f =615.8 Hz

%

Preferential directions

Colquitt et al. itish Applied Mathematics Colloquium 2012



Triangular lattices ~ Vector problem - planar elasticity = Primitive Waveforms

Forcing Frequency of 323 Hz (Pass Band)

Horizontal Forcing
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Triangular lattices ~ Vector problem - planar elasticity = Primitive Waveforms

Forcing Frequency of 323 Hz (Pass Band)

Vertical Forcing
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lar lattices Vector problem - planar elast ve Waveforms

Forcing Frequency of 323 Hz (Pass Band)

Concentrated Moment
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Triangular lattices ~ Vector problem - planar elasticity = Primitive Waveforms

Forcing Frequency of 615.8 Hz (Saddle Point)

Horizontal Forcing
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Triangular lattices ~ Vector problem - planar elasticity = Primitive Waveforms

Forcing Frequency of 615.8 Hz (Saddle Point)

Vertical Forcing
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a

lar lattices = Vector problem - planar elasticity =~ Primitive Waveforms

Forcing Frequency of 615.8 Hz (Saddle Point)

Concentrated Moment
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Triangular lattices ~ Vector problem - planar elasticity = Primitive Waveforms

Forcing Frequency of 428.6 Hz (Saddle Point)

Horizontal Forcing Vertical Forcing Concentrated Moment

m Shape of primitive waveform determined by slowness contour

m Existence of primitive waveforms not associated with saddle points as
in scalar case (Ayzenberg-Stepanenko et al.)

m Frequency dependent “switching” of waveform orientations for
monotonic lattice is a novel feature of elastic lattice

m Elastic lattice “allows selection” of dominant orientation via
type/orientation of applied forcing
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Summary

m Statically isotropic lattices can exhibit very strong dynamic anisotropy

m Qualitative behaviour of fundamental solution can be predicted from
the Bloch-Floquet problem

m Established the presence of primitive waveforms in elastic lattices
previously only demonstrated in scalar lattice

m Offered an explanation for these effects via analysis of slowness
contours

m Established the importance of the slowness contours in these primitive
waveforms

m Inclusion of micropolar interactions allows for additional primitive
waveforms

m Additional details can be found in
Colquitt et al. Dynamic anisotropy & localization in elastic lattice
systems. Waves in Random & Complex Media. To appear (doi:
10.1080/17455030.2011.633940).
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