Dynamic anisotropy and primitive waveforms in discrete elastic systems

D.J. Colquitt¹ I.S. Jones² A.B. Movchan¹ N.V. Movchan¹ R.C. McPhedran³

> ¹Department of Mathematical Sciences University of Liverpool

> > ²School of Engineering John Moores University

³CUDOS, School of Physics

University of Sydney

British Applied Mathematics Colloquium 2012

DJC gratefully acknowledges the support of an EPSRC research studentship (EP/H018514/1). ABM and NVM acknowledge the financial support of the European Community's Seven Framework Programme under contract number PIAPP-GA-284544-PARM-2. RCM acknowledges the support of the ARC through its Discovery Grants Scheme.

1 Introduction

- 2 A uniform (scalar) square lattice
 - Green's function & primitive wave forms

3 Triangular lattices

- Scalar problem
 - Green's function & primitive waveforms
- Vector problem planar elasticity
 - Governing Equations
 - Dispersive properties
 - Primitive Waveforms

Existing Literature

- Dispersion & design of structures for controlling stop bands in concentrated mass systems
 - P. Martinsson & A. Movchan, QJMAM 56 (2003), pp. 45-64.
- Primitive waveforms in scalar lattices
 - Ayzenberg-Stepanenko & Slepyan, J Sound Vib 313 (2008), pp 812–821.
 - Osharovich et al., Continuum Mech Therm 22 (2010), pp. 599–616.
 - Langley, J Sound Vib 197 (1996), pp. 447–469.
 - Langley, J Sound Vib 201 (1997), pp. 235–253.
- Dynamic homogenization of periodic media
 - Craster et al., QJMAM 63 (2010), pp.497–519.
 - Craster et al., Proc R Soc A 466 (2010), pp. 2341–2362.
 - Craster et al., JOSA A (2011), pp. 1032–1040.

A uniform square lattice

- \blacksquare Label each node by $\textbf{n} \in \mathbb{Z}^2$
- Introduce counting vectors $\mathbf{e}_i = [\delta_{1i}, \delta_{2i}]^T$.
- Lattice vectors: $\mathbf{t}_1 = [\ell, 0]^T$, $\mathbf{t}_2 = [0, \ell]^T$.
- Translation matrix $\mathcal{T} = [\mathbf{t}_1, \mathbf{t}_2].$
- Position of \mathbf{n}^{th} node: $\mathbf{x} = \mathbf{n} \otimes \mathcal{T}$.

A uniform square lattice

- \blacksquare Label each node by $\textbf{n} \in \mathbb{Z}^2$
- Introduce counting vectors $\mathbf{e}_i = [\delta_{1i}, \delta_{2i}]^T$.
- Lattice vectors: $\mathbf{t}_1 = [\ell, 0]^T$, $\mathbf{t}_2 = [0, \ell]^T$.
- Translation matrix $\mathcal{T} = [\mathbf{t}_1, \mathbf{t}_2].$
- Position of \mathbf{n}^{th} node: $\mathbf{x} = \mathbf{n} \otimes \mathcal{T}$.

A uniform (scalar) square lattice

A uniform square lattice

Uniform Square Lattice

Green's function for time-haromic out-of-plane shear

Balance of linear momentum at node n connected to set of nodes $\mathbb{P}(n) = \{n \pm e_1, n \pm e_2\}$ (for time-harmonic deformations)

$$\sum_{\mathbf{p}\in\mathbb{P}(\mathbf{n})}u(\mathbf{p})-|\mathbb{P}(\mathbf{n})|u(\mathbf{n})+\omega^2u(\mathbf{n})=\delta_{m0}\delta_{n0}$$

Discrete Fourier transform:

$$\mathcal{F}: u(\mathbf{m}) \mapsto \mathcal{U}(\boldsymbol{\xi}) = \sum_{\mathbf{m} \in \mathbb{Z}^2} u(\mathbf{m}) \exp \left\{ -i \boldsymbol{\xi} \cdot (\mathbf{n} \otimes \mathcal{T}) \right\}$$

Inverse transform:

Green's Function $u(\mathbf{n}) = \frac{1}{\pi^2} \int_0^{\pi} \int_0^{\pi} \frac{\cos(n_1\xi_1)\cos(n_2\xi_2)}{\omega^2 - 4 + 2(\cos\xi_1 + \cos\xi_2)} d\xi_1 d\xi_2.$ A uniform (scalar) square lattice | Green's function & primitive wave forms

Primitive Wave Forms at a Saddle Point

Dispersion Diagram

Slowness Contour

$$\sigma(\omega, \boldsymbol{\xi}) = 0$$

 $\sigma(2,\boldsymbol{\xi})=0$

A uniform (scalar) square lattice | Green's function & primitive wave forms

Two stationary points of different kinds

Triangular lattices

Uniform Triangular Lattice

Triangular lattices

Uniform Triangular Lattice

Triangular lattices

Uniform Triangular Lattice

Triangular lattices | Scalar problem

Uniform Triangular Lattice Dispersive properties

Fourier Transform:

$$\underbrace{\left[\omega^2 - 6 + 2\cos\xi_1 + 4\cos(\xi_1/2)\cos(\xi_2\sqrt{3}/2)\right]}_{\sigma(\omega,\boldsymbol{\xi})}\mathcal{U}(\boldsymbol{\xi}) = 1,$$

$$\sigma(\omega,\boldsymbol{\xi}) = \mathbf{0}$$

$$\sigma(2\sqrt{2},\boldsymbol{\xi})=0$$

Triangular lattices | Scalar problem | Green's function & primitive waveforms

Uniform Triangular Lattice

Green's function for time-harmonic out-of-plane shear

$$u(\mathbf{n}) = \frac{\sqrt{3}}{4\pi^2} \int_{0}^{2\pi} d\xi_1 \int_{0}^{2\pi/\sqrt{3}} d\xi_2 \frac{\cos[(n_1 + n_2/2)\xi_1] \cos[n_2\xi_2\sqrt{3}/2]}{\sigma(\omega, \boldsymbol{\xi})}$$

Triangular lattices | Vector problem - planar elasticity | Governing Equations

In-plane vector elasticity: Equilibrium equations Displacement amplitude field for time-harmonic waves

$$\mathbf{u}^{(1)} = \begin{bmatrix} u_1^{(1)}, u_2^{(1)}, \theta^{(1)} \end{bmatrix}^{\mathsf{T}}$$
$$\mathbf{u}^{(2)} = \begin{bmatrix} u_1^{(2)}, u_2^{(2)}, \theta^{(2)} \end{bmatrix}^{\mathsf{T}}$$
$$\mathbf{F}_1^{(i)} = ES\partial_x u_1(x),$$
$$\mathbf{F}_2^{(i)} = -EI\partial_{xxx}^3 u_2(x),$$
$$\mathbf{F}_3^{(i)} = -EI\partial_{xxx}^3 u_2(x).$$

The axial deformation satisfies

$$(\partial_{xx}^2 - \omega^2 \rho \ell / (ES)u_1(x) = 0,$$

with
$$u_1(0) = u_1^{(1)}, u_1(\ell) = u_1^{(2)}.$$

The flexural deformation solves

$$[\partial_{xx}^4 - \omega^2 \rho S/(EI)]u_2(x) = 0,$$

with
$$u_2(0) = u_2^{(1)}$$
, $u_2(\ell) = u_2^{(2)}$,
 $\partial_{xx}^2 u_2|_{x=0} = \theta^{(1)}$, $\partial_{xx}^2 u_2|_{x=\ell} = \theta^{(2)}$.

 Inclusion of flexural deformation allows for micropolar rotations.

$$\mathbf{F}^{(1)} = \overbrace{\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{23} & a_{33} \end{bmatrix}}^{A} \begin{bmatrix} u_{1}^{(1)} \\ u_{2}^{(1)} \\ \theta^{(1)} \end{bmatrix} + \overbrace{\begin{bmatrix} b_{11} & 0 & 0 \\ 0 & b_{22} & b_{23} \\ 0 & -b_{23} & b_{33} \end{bmatrix}}^{B} \begin{bmatrix} u_{1}^{(2)} \\ u_{2}^{(2)} \\ \theta^{(2)} \end{bmatrix}$$

$$a_{11} = \eta \cot \eta$$

$$a_{22} = \beta \lambda^{3} (\cosh \lambda \sin \lambda - \cos \lambda \sinh \lambda) / [2 (1 - \cos \lambda \cosh \lambda)]$$

$$a_{23} = \beta \lambda^{2} \sin \lambda \sinh \lambda) / [2 (1 - \cos \lambda \cosh \lambda)]$$

$$a_{33} = \beta \lambda (\sin \lambda \cosh \lambda - \cos \lambda \sinh \lambda)) / [2 (1 - \cos \lambda \cosh \lambda)]$$

$$b_{11} = -\eta \csc \eta$$

$$b_{23} = \beta \lambda^{2} (\cosh \lambda - \cos \lambda) / [2 (1 - \cos \lambda \cosh \lambda)]$$

$$b_{33} = \beta \lambda (\sin \lambda - \sinh \lambda) / [2 (\cos \lambda \cosh \lambda - 1)]$$

with $\beta = 2EI/(S\ell^2)$, $\eta = \omega \sqrt{\rho}$, $\lambda^4 = 2\omega^2 \rho/\beta$.

Balance of Momentum

Uniform elastic triangular lattice

- Nodal displacement in the n^{th} cell: $u^{(n)}$
- Introduce the matrices:

 $A(j) = R(j)^{\mathsf{T}}AR(j)$ and $B(j) = R(j)^{\mathsf{T}}BR(j)$

• R(j) - matrix of rotation by angle $j\pi/3$

Equations of motion

$$\omega^{2} \mathbf{u}^{(\mathbf{n})} = B(0)\mathbf{u}(\mathbf{n} + \mathbf{e}_{1}) + B(1)\mathbf{u}(\mathbf{n} + \mathbf{e}_{2}) + B(2)\mathbf{u}(\mathbf{n} - \mathbf{e}_{1} + \mathbf{e}_{2}) + B(3)\mathbf{u}(\mathbf{n} - \mathbf{e}_{1}) + B(4)\mathbf{u}(\mathbf{n} - \mathbf{e}_{2}) + B(5)\mathbf{u}(\mathbf{n} + \mathbf{e}_{1} - \mathbf{e}_{2}) + \sum_{0 \le j \le 5} A(j)\mathbf{u}(\mathbf{n})$$

Dispersion Equation

Fourier transformed equation

$$\omega^2 \mathcal{U} = \sigma(\omega; \boldsymbol{\xi}) \mathcal{U}$$

The dispersion equation is then det $\left[\sigma(\omega, \boldsymbol{\xi}) - \omega^2 \mathbb{I}\right] = 0.$

Slowness Contours

- Isotropic for small ω , as expected.
- Characteristic hexagonal contour at 323 Hz.
- Saddle point & intersection of slowness contours.
- Further saddle point at 615.8 Hz.
- "Switching" of preferential directions unique feature of elastic lattice.

Preferential directions

Forcing Frequency of 323 Hz (Pass Band) Horizontal Forcing

Forcing Frequency of 323 Hz (Pass Band) Vertical Forcing

Forcing Frequency of 323 Hz (Pass Band) Concentrated Moment

Forcing Frequency of 615.8 Hz (Saddle Point) Horizontal Forcing

Forcing Frequency of 615.8 Hz (Saddle Point) Vertical Forcing

Forcing Frequency of 615.8 Hz (Saddle Point) Concentrated Moment

Forcing Frequency of 428.6 Hz (Saddle Point)

Horizontal Forcing Vertical Forcing

Concentrated Moment

- Shape of primitive waveform determined by slowness contour
- Existence of primitive waveforms not associated with saddle points as in scalar case (Ayzenberg-Stepanenko et al.)
- Frequency dependent "switching" of waveform orientations for monotonic lattice is a novel feature of elastic lattice
- Elastic lattice "allows selection" of dominant orientation via type/orientation of applied forcing

Summary

- Statically isotropic lattices can exhibit very strong dynamic anisotropy
- Qualitative behaviour of fundamental solution can be predicted from the Bloch-Floquet problem
- Established the presence of primitive waveforms in elastic lattices previously only demonstrated in scalar lattice
- Offered an explanation for these effects via analysis of slowness contours
- Established the importance of the slowness contours in these primitive waveforms
- Inclusion of micropolar interactions allows for additional primitive waveforms
- Additional details can be found in

Colquitt et al. Dynamic anisotropy & localization in elastic lattice systems. *Waves in Random & Complex Media*. To appear (doi: 10.1080/17455030.2011.633940).