XXXX SUMMER SCHOOL "ADVANCED PROBLEMS IN MECHANICS" ST. PETERSBURG, RUSSIA 2012

> COMPLEX VARIABLE Fast multipole method for modelling hydraulic fractures in inhomogeneous media

Ewa Rejwer Liliana Rybarska-Rusinek Alexander Linkov

EUROTECH, Rzeszow University of Technology, Poland The support of the EU Marie Curie IAPP program is gratefully acknowledged

project HYDROFRAC Grant Agreement nr 251475

PROBLEMS TO BE DISCUSSED

 employing special forms of the complex variable boundary integral equations (CV-BIEs)

PROBLEMS TO BE DISCUSSED

 employing special forms of the complex variable boundary integral equations (CV-BIEs)

 using CV-BIEs and new analytical formulae for multipole moments in frames of the Fast Multipole Method (FMM)

EMPLOYING SPECIAL FORMS OF THE COMPLEX VARIABLE Boundary integral equations (CV-Bies)

- types of the boundary elements
- linear transformations of coordinates for straight and circular-arc boundary elements
- > approximations of higher order for the density function

EMPLOYING SPECIAL FORMS OF THE COMPLEX VARIABLE Boundary integral equations (CV-Bies)

- types of the boundary elements
- linear transformations of coordinates for straight and circular-arc boundary elements
- > approximations of higher order for the density function

Linkov A.M. *Boundary Integral Equations in Elasticity Theory*, Kluwer Academic Publishers, 2002;

Dobroskok A.A., Linkov A.M. *Complex variable equations and numerical solution of harmonic problems for piece-wise homogeneous media*, J. Appl. Math. Mech., 2009, 73 (3), 313-325;

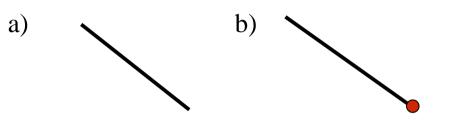
Linkov A.M., Szynal-Liana A. CV circular-arc ordinary and (multi-) wedge elements for harmonic problems, Eng. Anal. Bound. Elem, 2009, 33, 611-617; etc.

THE MAIN TYPES OF ELEMENTS USED FOR APPROXIMATION of the boundary of the region

> straight

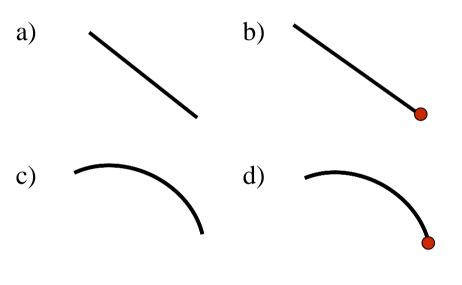
a) ordinary (non-tip)

b) singular (tip)

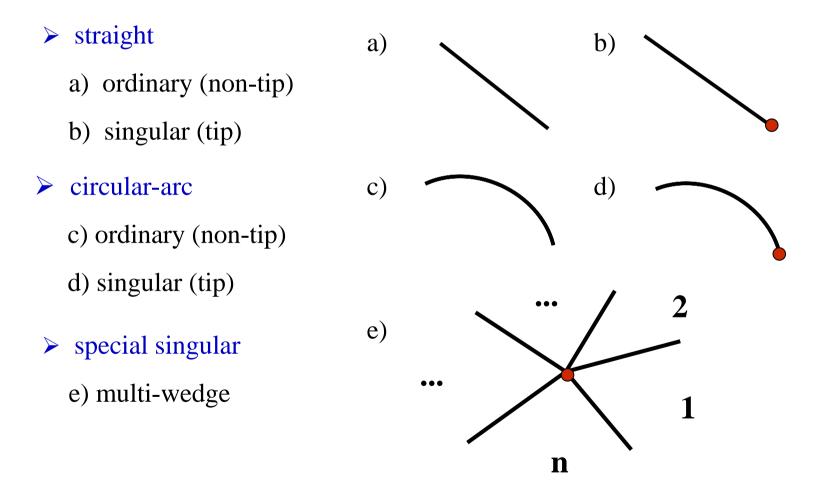


THE MAIN TYPES OF ELEMENTS USED FOR APPROXIMATION of the boundary of the region

- > straight
 - a) ordinary (non-tip)
 - b) singular (tip)
- ➢ circular-arc
 - c) ordinary (non-tip)
 - d) singular (tip)

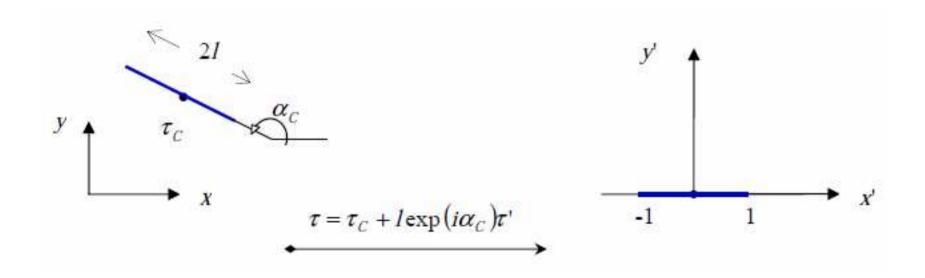


THE MAIN TYPES OF ELEMENTS USED FOR APPROXIMATION of the boundary of the region



LINEAR TRANSFORMATION OF CV COORDINATES From Global to local system for straight element

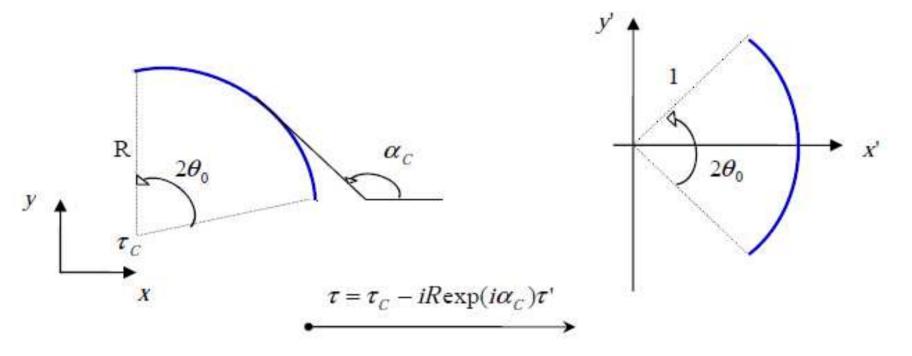
Straight element



A straight element is transformed into standard straight element

LINEAR TRANSFORMATION OF CV COORDINATES From Global to local system for circular-arc element

Circular-arc element



A circular-arc element is transformed into standard circular-arc element of unit radius

SEVEN STANDARD INTEGRALS USED TO BUILD CV BOUNDARY INTEGRAL EQUATIONS (CV-BIES)

$$\int_{L_e} \frac{f(\tau)}{\tau - z} d\tau, \quad \int_{L_e} \frac{f(\tau)}{(\tau - z)^2} d\tau, \quad \int_{L_e} f(\tau) \frac{\partial k_1}{\partial z} d\tau, \quad \int_{L_e} f(\tau) \frac{\partial k_2}{\partial z} d\tau,$$
$$\int_{L_e} f(\tau) dk_1(\tau, z) d\tau, \quad \int_{L_e} f(\tau) dk_2(\tau, z) d\tau, \quad \int_{L_e} f(\tau) \ln \left| \tau - z \right| ds,$$

 L_e is the boundary element, $f(\tau)$ is the density function, z = x + iy, τ are the CV coordinates of the field and integration points, respectively, ds is the length increment of integration path, $k_1 = Ln\left(\frac{\tau-z}{\overline{\tau}-\overline{z}}\right)$, $k_2 = \frac{\tau-z}{\overline{\tau}-\overline{z}}$.

APPROPRIATE APPROXIMATIONS OF THE DENSITY FUNCTION:

 $\frac{2}{3}$

 f_3

• for the standard straight element:

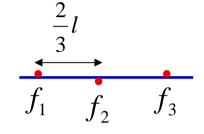
$$f(\tau') = \sum_{k=1}^{3} f_k \sum_{j=0}^{2} c_{kj} \tau'^j (1 - \tau')^{\beta}, \qquad \qquad \underbrace{\frac{3}{f_1 - f_2}}^{-i}$$

$$c_{ki}$$
, are the Lagrange coefficients of the approximated function.

APPROPRIATE APPROXIMATIONS OF THE DENSITY FUNCTION:

• for the standard straight element:

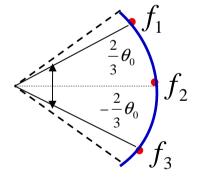
$$f(\tau') = \sum_{k=1}^{3} f_k \sum_{j=0}^{2} c_{kj} \tau'^{j} (1 - \tau')^{\beta},$$



 c_{ki} , are the Lagrange coefficients of the approximated function.

• for the standard circular-arc element: 3 1 to ia

$$f(\tau') = \sum_{k=1}^{\beta} f_k \sum_{j=-1}^{1} \widetilde{c}_{kj} \tau'^j \operatorname{Re}\left((e^{i\theta_0} - \tau')^{\beta}\right),$$



 \tilde{c}_{ki} , are the coefficients of the form functions at the arc of unit radius.

APPROPRIATE APPROXIMATIONS OF THE DENSITY FUNCTION: Evaluation of the exponent β

- > for integral on ordinary (non-tip) element: $\beta = 0$
- → for log-type kernel integral on singular (tip) element: $\beta = -m/n$ (*m* < *n*)
- → for singular and hypersingular integrals on singular (tip) element: $\beta = m/n > 0$

APPROPRIATE APPROXIMATIONS OF THE DENSITY FUNCTION: Evaluation of the exponent β

- > for integral on ordinary (non-tip) element: $\beta = 0$
- → for log-type kernel integral on singular (tip) element: $\beta = -m/n$ (*m* < *n*)
- → for singular and hypersingular integrals on singular (tip) element: $\beta = m/n > 0$

When considering integrals on singular multi-wedge elements, the value of β is found by the methods suggested in:

Blinova V.G., Linkov A.M., *A method to find asymptotic forms at the common apex of elastic wedges.*" J. Appl. Math. Mech., 1995, 59 (2), 187-195

Linkov A.M., Koshelev V.F. "*Muti-wedge points and multi-wedge elements in computational mechanics: evaluation of exponent and angular distribution.*" Int. J. Solids and Structures, 2006, 43, 5909-5930

USING CV-BIE AND NEW ANALYTICAL FORMULAE FOR MULTIPOLE Moments in Frames of the fast multipole method (FMM)

- ➤ cells and quad-tree structure
- analytical reccurent formulae for log-type kernel integrals defining influence coefficients and multipole moments
- multipole and local translations

USING CV-BIE AND NEW ANALYTICAL FORMULAE FOR MULTIPOLE Moments in Frames of the fast multipole method (FMM)

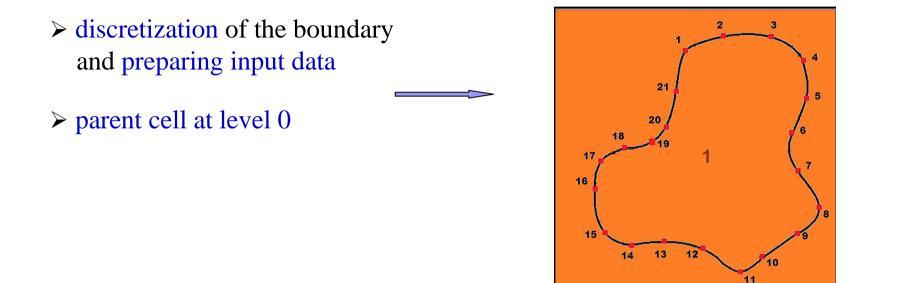
- ➤ cells and quad-tree structure
- analytical reccurent formulae for log-type kernel integrals defining influence coefficients and multipole moments
- multipole and local translations

Greengard L.F., Rokhlin V. "*A fast algorithm for particle simulations*", J Comput. Phys., 1987, 73 (2), 325-348;

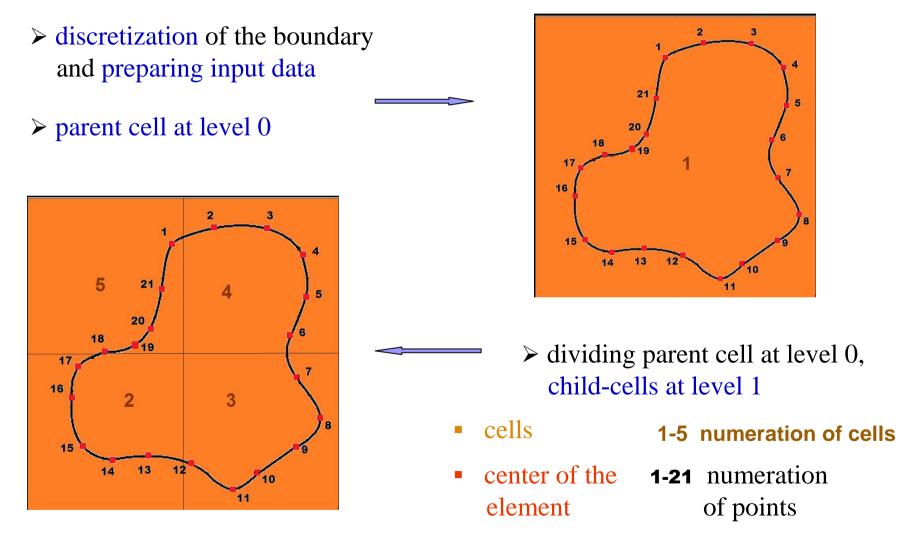
Liu Y.J., Nishimura N., *The fast multipole boundary element method for potential problems: A tutorial*", Eng. Anal. Bound. Elem., 2006, 30, 371-381;

and many others

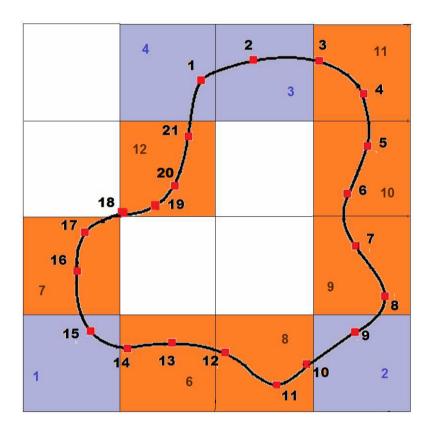
CELLS STRUCTURE OF THE BOUNDARY



CELLS STRUCTURE OF THE BOUNDARY



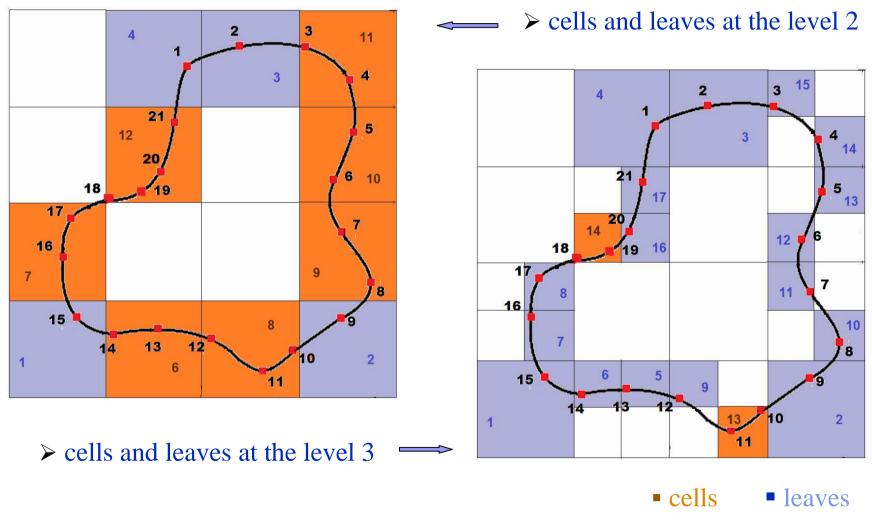
CELLS STRUCTURE OF THE BOUNDARY - NEXT STEPS OF DIVISION



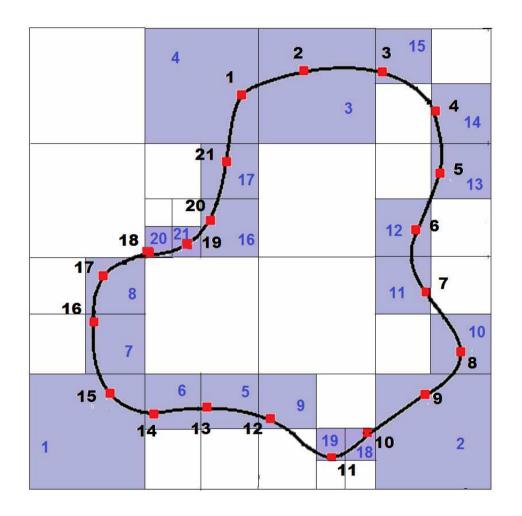
 \leftarrow cells and leaves at the level 2

• cells • leaves

CELLS STRUCTURE OF THE BOUNDARY - NEXT STEPS OF DIVISION



FINAL SHAPE OF THE CELLS STRUCTURE OF THE BOUNDARY

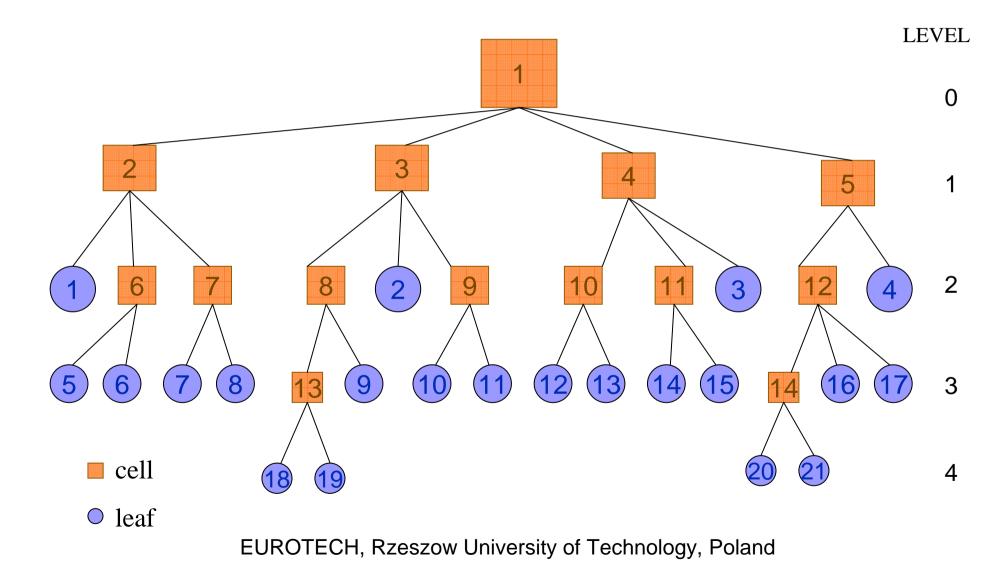


- continue dividing all nonempty cells to obtain leaves (non-empty cells containing less than prescribed number of elements)
- numeration of leaves and special renumeration of elements in each object at all levels

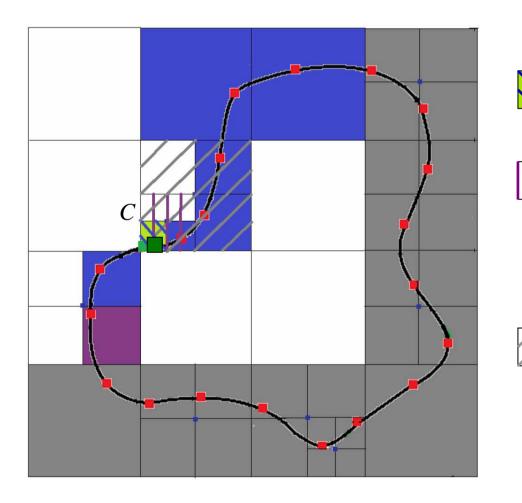
leaves

1-21 numeration of leaves

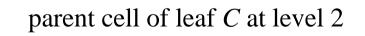
THE HIERARCHICAL QUAD-TREE STRUCTURE



INTERACTIONS BETWEEN OBJECTS: Adjacent, well separated and far objects



- collocation point
 - leaf C
 - objects adjacent to the leaf C
 - parent cell of leaf C at level 3
 - objects in interaction list to the parent cell of *C* at level 3, far objects to the leaf C



objects in interaction list to the parent cell of *C* at level 2,far objects to the leaf C

MULTIPOLE MOMENTS - DEFINITION

Consider integral on the element L_e , contained in the leaf with the center τ_0 and the point z far from the element of integration

 $\int_{L_e} f(\tau)G(\tau,z)ds.$ Expansion of the logarithmic potential $G(\tau,z) = -\frac{1}{2\pi}\ln|\tau-z|$ into Taylor series, yields:

$$-\frac{1}{2\pi}\int_{L_e} f(\tau)\ln|\tau-z|ds\approx\frac{1}{2\pi}\operatorname{Re}\left(\sum_{q=0}^{R_q}O_q(z-\tau_0)\int_{L_e}I_q(\tau-\tau_0)f(\tau)ds\right),$$

where the right-hand side integral is called multipole moment of order q,

$$O_0(z-\tau_0) = -Ln |z-\tau_0|, \quad O_q(z-\tau_0) = \frac{(q-1)!}{(z-\tau_0)^q} \quad \text{for } q \ge 1, \quad I_q(\tau-\tau_0) = \frac{(\tau-\tau_0)^q}{q!} \quad \text{for } q \ge 0.$$

FORMULAE FOR MULTIPOLE MOMENTS

Using the approximations of the density function we have:

for standard straight boundary element

$$M_{LS}^{q}(\tau_{0}') = \frac{1}{q!} \sum_{k=1}^{3} f_{k} \sum_{j=0}^{2} c_{kj} l \left(le^{i\alpha_{c}} \right)^{q} \int_{-1}^{1} \tau'^{j} (1-\tau')^{\beta} (\tau' - \tau_{0}')^{q} d\tau'$$

FORMULAE FOR MULTIPOLE MOMENTS

Using the approximations of the density function we have:

for standard straight boundary element

$$M_{LS}^{q}(\tau_{0}') = \frac{1}{q!} \sum_{k=1}^{3} f_{k} \sum_{j=0}^{2} c_{kj} l \left(le^{i\alpha_{c}} \right)^{q} \int_{-1}^{1} \tau'^{j} (1-\tau')^{\beta} (\tau' - \tau_{0}')^{q} d\tau'$$

for standard circular-arc boundary element

$$M_{LC}^{q}(\tau_{0}') = \frac{1}{q!} \sum_{k=1}^{3} f_{k} \sum_{j=-1}^{1} \widetilde{c}_{kj} (-iR) \left(-iR e^{i\alpha_{C}}\right)^{q} \int_{e^{-i\theta_{0}}}^{e^{i\theta_{0}}} \tau'^{j-1} \operatorname{Re}\left(\left(e^{i\theta_{0}} - \tau'\right)^{\beta} (\tau' - \tau_{0}')^{q}\right) d\tau'$$

ANALYTICAL RECURRENCE FORMULA FOR MULTIPOLE MOMENTS ON STANDARD STRAIGHT BOUNDARY ELEMENT

$$M_{q}^{0} = \tilde{I}_{q}, \quad M_{q}^{1} = \tilde{I}_{q+1} + \tau_{0}'\tilde{I}_{q}, \quad M_{q}^{2} = \tilde{I}_{q+2} + 2\tau_{0}'\tilde{I}_{q+1} + \tau_{0}'^{2}\tilde{I}_{q}$$

Multipoles
$$M_q^{j} = \int_{-1}^{1} w(\tau') \tau'^{j} (\tau' - \tau'_0)^q d\tau', \quad j = 0, 1, 2, \quad w(\tau') = (1 - \tau')^{\beta}$$
 are

recurrently evaluated by using dependency: $\tau'^{j} = [(\tau' - \tau'_{0}) + \tau'_{0}]^{j}$ and analytical,

recurrent expressions for integrals
$$\widetilde{I}_k = \int_{-1}^{1} w(\tau') (\tau' - \tau'_0)^k d\tau', \quad k = q, q+1, q+2$$
.

ANALYTICAL RECURRENCE FORMULA FOR MULTIPOLE MOMENTS On Standard Circular-Arc Boundary Element

$$M_q^0 = \tilde{I}_q, \quad M_q^{-1} = \tilde{I}_{q-1} - \tau'_0 M_{q-1}^{-1}, \quad M_q^{-2} = M_{q-1}^{-1} - \tau'_0 M_{q-1}^{-2}$$

For q=0, we firstly find integrals: $M_0^{-2} = \int_{e^{-i\theta_0}}^{e^{i\theta_0}} w(\tau') \frac{1}{\tau'^2} d\tau', \quad M_0^{-1} = \int_{e^{-i\theta_0}}^{e^{i\theta_0}} w(\tau') \frac{1}{\tau'} d\tau'.$

Multipoles
$$M_q^{\ j} = \int_{e^{-i\theta_0}}^{e^{i\theta_0}} w(\tau')\tau'^{\ j} (\tau' - \tau'_0)^q d\tau', \ j = 0, -1, -2, \ w(\tau') = \operatorname{Re}\left(\!\left(\!e^{i\theta_0} - \tau'\right)^{\!\beta}\right)$$

are recurrently evaluated by using dependency: $\tau'^{j} = [(\tau' - \tau'_{0}) + \tau'_{0}]^{j}$ and analytical,

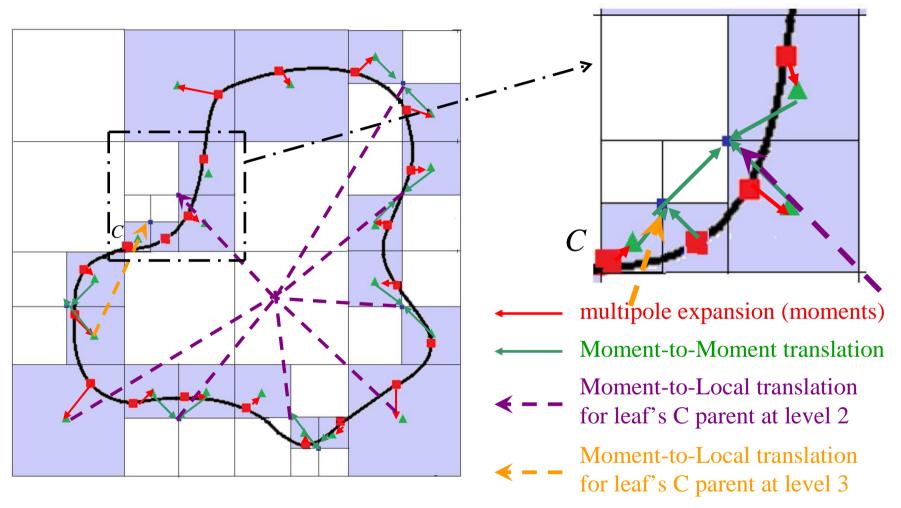
recurrent expressions for integrals:
$$\widetilde{I}_k = \int_{e^{-i\theta_0}}^{e^{i\theta_0}} w(\tau') (\tau' - \tau'_0)^k d\tau', \quad k = q - 1, q$$

MULTIPOLE EXPANSION AND MOMENT-TO-MOMENT TRANSLATION



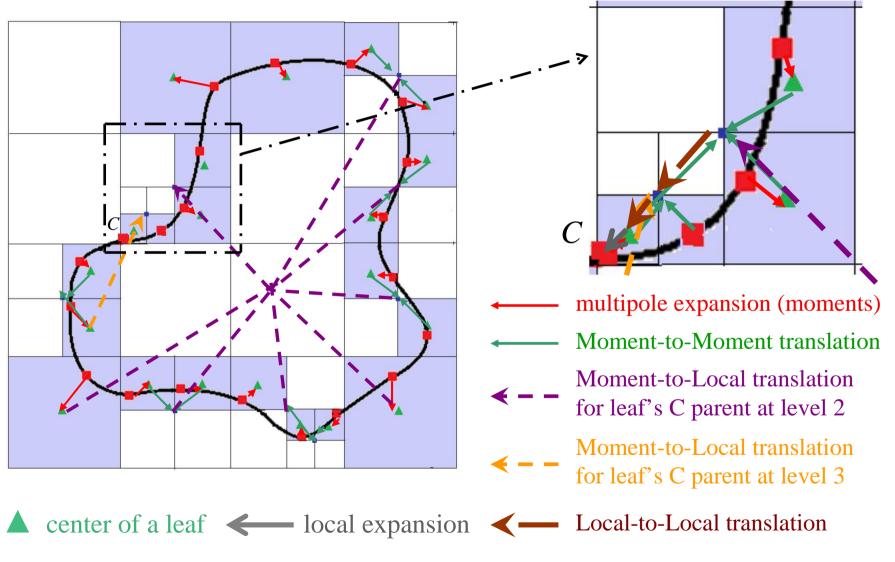
▲ center of a leaf

MULTIPOLE AND LOCAL TRANSLATIONS



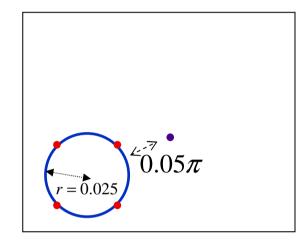
▲ center of a leaf

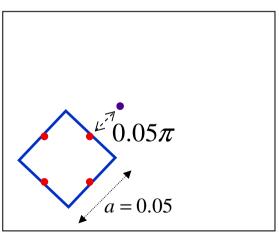
MULTIPOLE AND LOCAL TRANSLATIONS



Consider a closed contour approximated by four straight or circular-arc elements.

For a field point outside the contour, the singular-type kernel integral with constant density is zero.



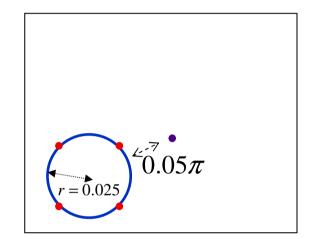


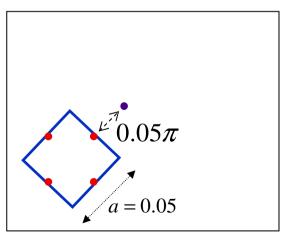
Consider a closed contour approximated by four straight or circular-arc elements.

For a field point outside the contour, the singular-type kernel integral with constant density is zero.

Application of CV FMM for the field point located outside the contour at the distance 0.05π , gives the result 10E-17 for both types of elements.

Approximation by a larger number of elements do not affect this accuracy notably.

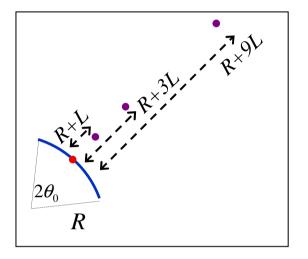




Consider a circular-arc crack with the angle $2\theta_0 = \frac{\pi}{3}$, radius R = 0.025 and crack length $L = 2R\theta_0$.

The distance from the center of the crack to the field point is R + nL, n=1, 3, 9. respectively.

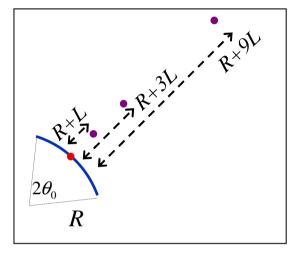
The relative distance is: $r = \frac{R}{R + nL}$.



Consider a circular-arc crack with the angle $2\theta_0 = \frac{\pi}{3}$, radius R = 0.025 and crack length $L = 2R\theta_0$.

The distance from the center of the crack to the field point is R + nL, n=1, 3, 9. respectively.

The relative distance is: $r = \frac{R}{R + nL}$.



Relative error between results of direct integration and CV FMM.

maximal order of multipole moment	$M_{\scriptscriptstyle LC}$				M_{SC}			
	5	8	12	16	5	8	12	16
r = 1/3								
relative error	3E - 05	2E - 05	7 <i>E</i> -07	4 <i>E</i> -08	1E - 02	6 <i>E</i> – 04	4E - 05	2 <i>E</i> -06
r = 1/9								
relative error	1E - 06	1E - 08	1E - 08	1E - 08	1E - 04	3E - 07	1 <i>E</i> -10	1 <i>E</i> -13
r = 1/19								
relative error	1E - 07	1E - 08	1E - 08	1E - 08	2 <i>E</i> -06	1E - 09	1E - 12	3 <i>E</i> -13

THANK YOU FOR ATTENTION