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Introduction

The crack propagation in ceramic materials lim-
its their applicability. The classical technique of
fracture analysis is based on the theory of linear
elasticity and the solution for the crack prob-
lem is widely used by both scientists and engi-
neers [1]. Nevertheless, this method does not
allow to study the solution close to the crack
tip and does not allow to study the dynamic
e�ects of such fracture. The interfacial cracks,
e.g. along ceramic/metal interfaces (�g.1), can
be initiated by the lattices mismatch of the ma-
terials during the production stage [2]. In such
a case a residual stress �eld can be generated
along the interface which then can lead to the
failure of a material.

Figure 1: Distribution of elastic strain energy den-
sity in the copper section with the thickness Åat the
center of the periodic cell [2].

Proposed model

We consider a crack propagation in a discrete
structure with non-local interactions (�g.2)
which can represent the prestressed interface.
We assume: M is a mass of a particle, c1 is
a sti�ness of the links between the particles
and a substrate, c2, c3 is a spring constant be-
tween the closest and second-closest neighbors
respectevely, n∗ is a position of a crack tip which
propagates with a constant speed v from left to
right. We study the e�ect of introduced non-
local interactions, i.e. the magnitude of c3 in
comparison with c1 and c2. The analysis is based
mostly on the ideas proposed by Slepyan L.I. [3]
and developed in various works, e.g. [4].

 

 
 

   

     

 

 

 

Figure 2: Discrete chain with non-local interac-
tions.
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Mathematical Formulation

Let us de�ne the displacement of n-th particle as un(t) and introduce the variable η = n∗ − vt. The
equation of motion for a displacement particle in terms of variable η takes form:

Mv2u′′(η) = c3(u(η + 2) + u(η − 2)− 2u(η)) + c2(u(η + 1) + u(η − 1)− 2u(η))− c1u(η)H(η), (1)

where H(η) is a Heaviside step function. The boundary conditions that we consider are:

• Constant load with magnitude C at η = −∞.

• Constant load C with the background harmonic load A0 cos(kfη−φ) of amplitude A0, frequency
kf and phase shift φ at η = −∞.

The solution of the problem can be obtained by use of Fourier transform. This transform leads to a
Wiener-Hopf type equation which can be solved by application of proper factorization procedure.

Results

The solution of problem (1) in terms of Fourier transform:
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The displacement �eld u(η) can now be obtained from (2) by inverse Fourier transform.
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Figure 3: Dependence of energy ratio G0/G on the ratio of crack speed v/vc with di�erent values of
parametres of a model.

Expressions in (2) allow us to analyze the energetic characteristics of the fracture process in the
discrete chain. From the asymptotic behavior of functions U±(k) at in�nity we can get an expression
for the energy release rate G. The plots on the �g.3 show the dependence of ratio of energies G0/G
on v/vc, where G0 is an accumulated energy in the spring before it breaks and vc is the speed of
sound of the "unbroken" part of chain. The loss of monotonicity of the dependence at low crack
velocities reveal the speci�cs of the discrete model.
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Figure 4: Dependence of a displacement �eld in the vicinity of a crack tip (M = 1, v = 0.3).

The dependence of function displacement �eld u(η)/uc is shown on �g.4, where we use a fracture
criterion u(η) = uc as a condition of a spring failure. The plots show the waves running from the
crack tip which demonstrate the dynamic e�ects of a crack propagation.

Conclusions

• Developed model allows to study the interfacial cracks in materials, e.g. along ceramic/metal
interfaces.

• Introduced non-local interactions show the signi�cant changes of a behavior of the system with
a crack propagating at low speed.


